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Abstract
We present the one-loop effective action of a quantum scalar field with DSR1
spacetime symmetry as a sum over field modes. The one-loop effective action
has real and imaginary parts and manifest charge conjugation asymmetry, which
provides an alternative theoretical setting to the study of the particle–antiparticle
asymmetry in nature.

PACS numbers: 03.70.+k, 04.62.+v, 12.20.−m

We report here a recent result concerning the one-loop effective action of doubly relativistic
theory of type 1 (DSR1) [1, 2] (when referring to this and other one-loop effective actions,
we will sometimes omit for brevity the one-loop specification). To set the stage for this
result, we start by discussing analogous results in usual relativistic theory described by the
Poincaré algebra. Then we consider the κ-deformed Poincaré algebra in standard basis and in
bicrossproduct basis [3–6]. The latter is the mathematical setting of DSR1 theory [2].

It is usually assumed that local spacetime symmetries are completely described by the
Poincaré algebra, whose defining commutation relations between the basis elements we exhibit
here with the purpose of comparison with the deformed algebras that we consider in the present
work. In the usual notation, we have

[P µ, P ν] = 0, i[P µ, J ρσ ] = gµρP σ − gµσP ρ,

i[Jµν, J ρσ ] = gνρJµσ − gµρJ νσ − gνσ Jµρ + gµσJ νρ,
(1)

where we identify P 0 as the energy, P i (i = 1, 2, 3) as the components of the momentum
three-vector, J i = εijkJ jk/2 (i = 1, 2, 3) as the components of the angular-momentum three-
vector and Ki = J i0 (i = 1, 2, 3) as the components of the boost three-vector. The first
Casimir invariant of this algebra is the relation between energy and momentum given by

PµP µ = P2 − P 2
0 = −m2, (2)
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where m2 is a positive real scalar which labels the irreducible representation of the algebra
under consideration. For this case m is the mass of the field excitation, i.e., its rest frame
energy. It leads to the usual relativistic dispersion relations p0 = ω(±)(p), where

ω(±)(p) = ±
√

p2 + m2. (3)

The equality ω(+)(p) = −ω(−)(p) describes charge conjugation symmetry; i.e, particles and
antiparticles have the same dispersion relation (except for the signs).

From the Casimir invariant (2) we also identify the Schwinger proper-time Hamiltonian
for a relativistic scalar field [7],

H = P2 − P 2
0 + m2. (4)

For simplicity, we will consider here only the case of a scalar field, which we represent by φ.
The proper-time Hamiltonian is all we need in order to calculate the one-loop effective

action given in Schwinger representation, which has the form [7]

W = − i

2

∫ ∞

0

ds

s
Tr e−isH , (5)

where the real variable s is the so-called proper time, H is the proper-time Hamiltonian of the
theory and Tr represents the total trace on the exponential operator. The one-loop effective
action W satisfies

〈0t2|0t1〉 = eiW , (6)

where 〈0t2|0t1〉 is the vacuum persistence amplitude from an instant t1 in the remote past to an
instant t2 in the distant future. In (6) we identify the vacuum energy E0 as given by the real
part of the effective action,

E0 = −ReW
T

, (7)

where T = t2 − t1. The shift of this energy caused by external conditions is the Casimir energy
[8, 9], an important observable in any relativistic field theory. The properly renormalized
imaginary part of the effective action gives the probability of vacuum decay,

1 − ∣∣〈0t2

∣∣0t1

〉∣∣2 = 1 − e−2 ImW . (8)

In this way, a positive imaginary contribution coming from the effective action may give rise
to the phenomenon of creation of field excitations. Obviously enough, a negative imaginary
part would lead to the inconsistent result of a negative probability. It is remarkable that two
genuine and important quantum field effects, such as the Casimir energy and vacuum decay,
can be obtained from the sole information of what is the Casimir invariant of the algebra of
spacetime symmetries of the field. From this algebraic invariant, we also obtain the expression
of the vacuum energy as the half-sum of field frequencies. Indeed, by substituting into (5) the
proper-time Hamiltonian H given in (4) we arrive at

W
T

= −
∑

p

1

2
|ω(±)(p)|, (9)

where ω(±)(p) is given by the usual dispersion relations (3). The identification of the half-sum
of frequencies in (9) with the vacuum energy then follows from expression (7) of the effective
action in terms of the vacuum energy.

Results in quantum gravity and string theory, as well as some experimental astrophysical
paradoxes, seem to indicate the existence of new dispersion relations which differ from the
usual relativistic relations (3) [2, 10]. These new relations depend on a dimensionful parameter
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that sets the scale at which the usual relation fails and the new ones should be considered.
In a certain limit of the parameter the new relations reduce to the usual one, due to the
fact that at this limit we are back to the regime of validity of Poincaré invariance. In this
way, the new relations can be mathematically described as deformations of the usual one
and the dimensionful parameter plays the role of a deformation parameter. The proper way
of obtaining these deformed dispersion relations is from Casimir invariants of deformations
of Poincaré algebras. We will deal with the κ-deformed Poincaré algebras [3–6], the most
promising mathematical structure to describe possible new spacetime symmetries. These
κ-deformed Poincaré algebras are examples of Hopf algebras also known in the literature as
quantum algebras or quantum groups (cf, e.g., [11]). Since we are not concerned with the
co-algebraic part of such quantum groups here we exhibit only its algebraic parts.

The original κ-deformed Poincaré algebra [3, 4] is defined in the so-called standard basis
[6] and is given by

[P µ, P ν] = 0, [J i, J j ] = iεijkJ k, [J i, P j ] = iεijkP k,

[J i, P 0] = 0, [Ki,Kj ] = −iεijk(J k cosh(P 0/κ) − (P k/4κ2)P · J),

[Ki, P j ] = iδij κ sinh(P 0/κ), [Ki, P 0] = iP i, [J i,Kj ] = −iεijkKk,

(10)

where κ is a real positive deformation parameter with dimension of mass. This parameter sets
for energy, length and time the respective scales Eκ = κc2, 	κ = h̄/(κc) and tκ = h̄/(κc2).
The Casimir invariant relating energy and momentum in this algebra is given by

P2 −
(

2κ sinh
P 0

2κ

)2

= −m2, (11)

which leads immediately to the following dispersion relations:

p0 = ω(±)(p) = ±2κ sinh−1

(
1

2κ

√
p2 + m2

)
. (12)

In this theory, which we call for short κ-deformed theory, the proper-time Hamiltonian is

Hκ = P2 − (2κ)2sinh2

(
Po

2κ

)
+ m2. (13)

In the limit in which the deformation parameter κ goes to infinity the κ-deformed Poincaré
algebra (10) reduces to the usual Poincaré algebra (1). In this limit the κ-deformed Casimir
invariant (11), dispersion relations (12) and propertime Hamiltonian (13) also reduce to the
corresponding non-deformed quantities given in (2), (3) and (4), respectively.

By inserting this κ-deformed proper-time Hamiltonian (13) into (5), we obtain the
following expression for the κ-deformed effective action [12],

Wκ

T
= −

∑
p

1

2
|ω(±)(p)| + i

1

2πκ

∑
p

1

2
|ω(±)(p)|2, (14)

where now ω(±)(p) is obtained from the κ-deformed dispersion relation (12). The real part
has the usual form of half-sum of field frequencies as in the non-deformed case, although
the frequencies which are summed here are the κ-deformed (12). The imaginary part has the
interesting property of being proportional to the sum of the squares of the κ-deformed field
frequencies. If the scalar field is submitted to Dirichlet boundary conditions on parallel plates
of side 	 and separation a, we obtain from the real part of the κ-deformed effective action the
Casimir energy [13]

E(a) = − 	2

16π2a3

∑
n=1

∫ ∞

0
dσσ e−n2σ−(2κ2+m2)a2/σ

√
4a2κ2

πσ
π I0

(
2a2κ2

σ

)
(15)
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and from the imaginary part the following creation rate of field excitations [13],

ImWκ

T a	2
= 1

16π2a4

∑
n=1

∫ ∞

0
dσσ e−n2σ−(2κ2+m2)a2/σ

√
4a2κ2

πσ
K0

(
2a2κ2

σ

)
, (16)

where I0 and K0 are the modified Bessel functions. It is important to note the manifest
positiveness of the renormalized imaginary part (16) of the effective action. The κ-deformed
Casimir energy (11) reduces to the Casimir energy of the usual scalar field in the limit κ → ∞
in which the deformation disappears. The creation rate goes to zero in this limit or in the limit
a → ∞ of infinite separation of the plates. In this way the creation rate is a consequence of
both deformation and boundary condition, if one of these factors is not present the creation
rate vanishes. Let us notice that the vacuum energy expression given in (14) can also be
obtained from usual canonical formalism [14]. The sum of modes expression (14) can also
be used to obtain the Casimir energy [15, 14] and the creation rate [16] for the κ-deformed
electromagnetic field.

Let us now turn to the κ-deformation of the Poincaré algebra in the so-called
bicrossproduct basis, which is given by [5, 6]

[Pµ, Pν] = 0 [Ji, Pj ] = iεijkPk [Ji, P0] = 0

[Ki, Pj ] = iδij ((1/2λ)(1 − e2P0λ) + (λ/2)P2) − iλPiPj

[Ki, P0] = iPi i[Jµν, Jρσ ] = gνρJµσ − gµρJνσ − gνσ Jµρ + gµσJνρ

(17)

where λ = 1/κ is an alternative parameter with the dimension of length. The doubly special
relativity of type 1 is a theory whose spacetime symmetry is described by this algebra [1, 2].
This parameter provides the second invariant, besides the speed of light, which characterizes
the theory as doubly special relativity. In DSR1 there is a natural scale for length 	λ = λ and
also scales for energy and time, namely Eλ = h̄c/λ and tλ = λ/c. In most applications 	λ is
taken as the Planck length. For brevity we refer to (17) as the λ-deformed Poincaré algebra.
In the limit λ → 0 this deformed algebra reduces to the Poincaré algebra.

From the λ-deformed Poincaré algebra (17) we have the following Casimir invariant
involving energy and momentum:

P2 eλP0 − eλP0 + e−λP0 − 2

λ2
= −m2. (18)

Let us take from this Casimir invariant the following proper-time Hamiltonian for a scalar
field:

Hλ∗ = P2 eλP 0
+ m2 − 1

λ2

(
eλP 0 − 2 + e−λP 0)

. (19)

From the Casimir invariant (18) we also identify the λ-deformed dispersion relations
p0 = ω(±)(p), where

ω(+)(p) = −1

λ
log


1 +

λ2m2

2
−

√(
λ2m2

2

)2

+ λ2(p2 + m2)


 (20)

are the positive frequencies defined for |p| < 1/λ and

ω(−)(p) = −1

λ
log


1 +

λ2m2

2
+

√(
λ2m2

2

)2

+ λ2(p2 + m2)


 (21)
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are the negative frequencies defined for any |p|. Note that for |p| > 1/λ expression (20) for
the positive frequency is not a real number and for this reason it should be discarded. However,
we will see that its real part

ω(>)(p) = −1

λ
log


−1 − λ2m2

2
+

√(
λ2m2

2

)2

+ λ2(p2 + m2)


 , (22)

for |p| > 1/λ, appears naturally in the development of the formalism due to the fact that the
Casimir invariant (18) was taken unrestrictedly to define the proper-time Hamiltonian (19)
of the theory. The theory arising from these dispersion relations has no invariance under
charge conjugation. In particular, particles have the saturation momentum pc = 1/λ while
antiparticles have no constraint on its momentum values. Let us call the momentum or any
quantity thereof unsaturated or transaturated whenever the magnitude of the momentum is
lower or greater than the saturation momentum 1/λ, respectively.

As an alternative way of defining a theory from the Casimir invariant (18) it is possible to
use only the dispersion relation p0 = ±ω(+)(p) with charge conjugation symmetry imposed
on the theory. In this case both particles and antiparticles have saturation momentum 1/λ.
We will consider the theory with charge conjugation asymmetry derived from the proper-time
Hamiltonian (19). To distinguish it from other possibilities we refer to it as DSR1∗ theory.
The main result that we present for the DSR1∗ theory is a calculation of its one-loop effective
action leading to an expression in terms of the sum of field modes.

The calculation of the effective action for DSR1∗ theory is a rather involved problem, due
to its most essential features, namely, the lack of charge conjugation symmetry in the theory and
the existence of a saturation momentum 1/λ, which leads to a rather peculiar distribution of
poles in the plane of complex frequencies. For simplicity we consider a twodimensional
spacetime. Although not necessary for our purposes here, it is convenient for future
applications to impose periodic boundary conditions on the scalar field φ, φ(x+a, t) = φ(x, t),
where a is the periodicity length. In this case, momentum is discretized as p1 = 2πn/a

(n ∈ Z) and the saturation momentum becomes [a/(2πλ)], the greatest integer which is
smaller than a/(2πλ). After a long calculation which starts by substituting the DSR1∗ proper-
time Hamiltonian (19) in the Schwinger’s formula (5) we obtain the following expression for
the one-loop DSR1∗ effective action,
Wλ

T
= −1

2

∑
|n|�[ a

2πλ
]

∣∣ω(−)
n

∣∣ − 1

4

∑
|n|>[ a

2πλ
]

∣∣ω(−)
n

∣∣

+ i
λ

2π


1

2

∑
n∈Z

(
ω(−)

n

)2
+

1

2

∑
|n|�[ a

2πλ
]

(
ω(+)

n

)2
+

1

2

∑
|n|>[ a

2πλ
]

(
ω(>)

n

)2


 , (23)

where ω(+)
n , ω(−)

n and ω(>)
n are the discretized versions of the frequencies defined in (20),

(21) and (22), respectively. By comparing this expression for the DSR1∗ action with the
corresponding expression (14) for the κ-deformed action, it is evident that the former has a
more complicated structure that seems to be a result of the asymmetry between the particle
and antiparticle sectors and of the existence of a saturation momentum. Expression (23) for
the effective action as a sum of modes is well suited for physical interpretation, to which we
proceed now.

First of all, the DSR1∗ effective action has real and imaginary parts, as in the κ-deformed
case, and the whole expression has the correct limit when the deformation disappears, i.e.,
when λ → 0. In this limit the imaginary part of the DSR1∗ goes to zero, because of its
prefactor λ, while the real part reduces to the effective action (9) of the non-deformed scalar
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field. Also as in the κ-deformed case, the real part is given by a sum of field frequencies and
the imaginary part by a sum of squares of field frequencies. We are led to raise the question
whether any deformation of the Poincaré algebra will have both real and imaginary parts and,
if this is the case, it will follow the pattern of sum of frequencies for the real part and sum of
squares of frequencies for the imaginary part.

Due to lack of charge conjugation symmetry in DSR1∗ theory, its effective action reveals
that stationary vacuum fluctuations obey the dispersion relations of the negative frequencies
while the possible vacuum decay described by the imaginary part of the action occurs according
to the dispersion relations of both negative and positive frequencies. Clearly, these features
cannot be seen in the non-deformed theory or in the κ-deformed theory, because the negative
and positive frequencies in their effective actions have the same modulus, due to charge
conjugation symmetry. In addition to the sole presence of negative frequencies in the real
part, they appear in a rather peculiar way, namely, the unsaturated frequencies with the usual
weight 1/2 in its sum and the transaturated frequencies with just half of this weight, 1/4.

We should also note that in the imaginary part of the effective action there are contributions
not only from the positive and negative frequencies, but also from the frequencies ω(>)

n that
we defined in (22). It is remarkable that the real quantity ω(>)

n is not included into the
theory by hand, but appears naturally in the course of calculation. With the presence of
those transaturated positive frequencies in the imaginary part, we may state that the whole
range of momenta contributes to the imaginary part, with the sole exception of the saturation
momentum 1/λ.

Due to the presence of both real and imaginary parts in DSR1∗ theory, there exists the
possibility that the real part gives rise to a Casimir energy when boundary conditions are
present and the imaginary part to a creation rate of field excitations even with static boundary
conditions. However, the calculation of these quantities is not a straightforward task, due to
the abrupt cut in the summation of frequencies when the saturation moment is reached, as it
happens in the real and imaginary parts of DSR1∗ effective action (23). This is a problem that
deserves careful analysis, since Casimir energy and creation rates associated with boundary
conditions are useful theoretical probes into any theory. For example, a negative imaginary part
in the renormalized effective action reveals a serious inconsistency in the theory, as remarked
above.

Finally, we should make a remark about the lack of charge conjugation symmetry in
DSR1∗. Indeed, the overwhelming asymmetry between the quantities of matter and antimatter
in the universe requires an asymmetry somewhere in the theory of its evolution. It has
been argued [13] that the creation rate of field excitations (16) obtained from the imaginary
part of the κ-deformed effective action provides a mechanism for the creation of matter and
radiation in the early universe. Now, if a theory has not only an imaginary part in the effective
action but also a manifest charge conjugation asymmetry, there exists the possibility that the
above-mentioned mechanism of creation of matter and radiation occurs in a non-symmetrical
way. This may provide an alternative theoretical setting to investigate the particle–antiparticle
asymmetry in nature. As we have seen, DSR1∗ is an example of a theory with these features,
although we cannot yet decide for sure what would be the correct theory describing such
asymmetry in nature. Much more work is necessary to reach any conclusion on such
matters, but it is worthwhile to consider the above remarks due to the importance of the
subject.

There are some natural continuations to this work. The obvious one is to calculate the
Casimir energy and possible creation rate of field excitations from the DSR1∗ effective action.
The result of this calculation may be very important to determine the consistency of the theory
and its general features as, for example, if the presence of transaturated quantities in the
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effective action is spurious or not. If they are spurious we will have to face the question of
how to eliminate them.
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